Silicon Valley Power invests in electric vehicle charging infrastructure

Over the past several years, the City of Santa Clara and the State of California have developed significant goals related to expanding the availability of electric vehicle (EV) charging stations to encourage transportation electrification and help the City meet greenhouse gas emission reduction targets of 55 percent by 2035. The California Energy Commission (CEC) EV model projects an increase of more than 24,000 electric vehicles in Santa Clara by 2030.

The Santa Clara City Council has approved Silicon Valley Power’s (SVP) $2 million plan for the installation of up to 300 new public EV charging stations throughout Santa Clara. The five-year project will update the City’s existing EV infrastructure and “power up” public places such as parks, libraries and community centers by installing new EV charging stations. The first phase of the plan calls for 77 new EV charging stations to be installed this year. This project is funded with proceeds from the Low Carbon Fuel Standard Program and the Greenhouse Gas Reduction Fund.

Additionally, SVP is partnering with the CEC and four local energy agencies to launch an incentive program for the installation of EV charging stations throughout Santa Clara and San Mateo counties. As more Californians choose to drive EVs and as the state transitions to a cleaner transportation system, there is a continued need for available EV charging stations. This is especially true in Silicon Valley, which has the highest rate of EV sales in the state.

Over the next four years, SVP will participate in this regional collaborative to provide incentives to build and install EV charging stations at multifamily dwellings and commercial and public locations in the City of Santa Clara. SVP is providing $1 million per year in funding from the Low Carbon Fuel Standard Program for Level 2 EV charging equipment and infrastructure investments. The CEC will match the utility’s commitment with $1 million per year dedicated for EV Fast Charging stations, bringing total funding to $2 million per year over the next four years. The program will be administered through the California Electric Vehicle Infrastructure Project, also known as CALeVIP, and implemented by Center for Sustainable Energy.

SVP is working with the other local agencies, the CEC and the Center for Sustainable Energy on project requirements, program specifics and incentive levels. The project is targeted to launch this fall.

Inside this issue:
Silicon Valley Power invests in electric vehicle charging infrastructure
Making the most of your LED upgrade
Shedding light on the hidden costs of summer
Employee profile: Steven Arterburn

Product Content Label
Santa Clara Green Power matches 100% of your electricity usage. The chart below provides the renewable resource mix in the Silicon Valley Power Santa Clara Green Power Program in 2019, as well as the projected resource mix in 2020.

<table>
<thead>
<tr>
<th>Resource Type</th>
<th>2019 Historical</th>
<th>2020 Prospective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solar (100%)</td>
<td>CA and UT</td>
<td>AZ, MT, WY, CA, CO, ID, NM, NV, OR, UT or WA</td>
</tr>
<tr>
<td>Total (100%)</td>
<td></td>
<td>Total (100%)</td>
</tr>
</tbody>
</table>

1. New Renewables come from generation facilities that first began commercial operation within the past 15 years. This product may include generation from facilities that were approved for extended use under a strict set of criteria by Green-e Energy and/or qualify as renewable.

2. The prospective figures reflect the renewables that we have contracted to provide. Actual figures may vary according to resource availability. Historic figures reflect the power delivered to Silicon Valley Power Santa Clara Green Power customers in 2019.

For comparison, current average mix of resources supplying Silicon Valley Power residential customers includes Large Hydroelectric (30%), and Eligible Renewables (40%). Current average mix of resources for Silicon Valley Power non-residential customers includes Natural Gas (34%), Large Hydroelectric (21%), Unspecified (21%), and Eligible Renewables (23%). Source: Silicon Valley Power 2019 Power Content Label.

*The average home in Santa Clara uses 500 kWh per month. (Source: Silicon Valley Power, 2019)

For specific information about electric vehicle product, please contact Silicon Valley Power at 408-244-5640 (8183), email green@siliconvalleypower.com, or visit siliconvalleypower.com/green
Making the most of your LED upgrade

LEDs have made quite an impression on the lighting industry. They offer serious benefits in high efficiency, long life, excellent color quality and are compatible with controls. Despite this, an LED upgrade is no walk in the park. Careful planning is required to optimize savings and performance. Take the following steps to ensure the success of your lighting replacement program.

Conduct a survey
Before you upgrade, survey your lighting system to determine where changes may be needed. Do you have poor lighting in some areas and problems with glare in others? Consult with a qualified lighting designer or engineer. They can answer these questions and help you design a lighting system that will improve productivity and enhance your indoor environment.

Set priorities
With their many benefits, you may be tempted to replace all of your lighting with LEDs. That could be expensive, and LEDs may not be the right fit for every application. With their many benefits, you may be tempted to replace all of your lighting with LEDs. That could be expensive, and LEDs may not be the right fit for every application.

Select carefully
LED technology is changing rapidly, and product certification and testing procedures are still developing. Find out if the product has been tested according to recognized standards, such as those published by the Illuminating Engineering Society. Make sure a warranty is included and be clear about what it covers. Choose products that are ENERGY STAR® or DesignLights Consortium™-qualified. By asking suppliers the right questions, you can help ensure light quality and performance.

Add controls
Even LEDs waste energy if they’re left on in empty spaces. Make lighting controls, such as occupancy sensors and daylighting, a part of your LED upgrade. They can optimize your savings by limiting light use only when and where it’s needed. LEDs are inherently dimmable, and they start instantly, making them ideal for most control strategies.

Shedding light on the hidden costs of summer
You’ve had your air conditioning system cleaned and inspected by a qualified professional. So now you’re ready for a long summer of lower energy costs and a more comfortable indoor environment, right? Well, maybe not. The truth is there may be a number of undetected issues in your facility that can put the heat on your energy bills.

Out of tune building controls
Thermostats, sensors and other building controls are designed to save energy while maintaining a comfortable, productive indoor environment. Without seasonal adjustments, however, neglected controls can end up wasting energy. Align indoor and outdoor building sensors. Calibrate room and duct thermostats and humidistats, as well as pressure and temperature sensors in accordance with design specifications. Inspect damper and valve controls to ensure that they’re functioning properly.

Overcooked kitchen ventilation
Facilities with kitchen operations often leave hood ventilation units running at full speed, even during idle times. Not only does this waste energy, but it sucks air out of the building, requiring the HVAC system to work harder at supplying and cooling makeup air. Demand-control hood ventilation can save energy by adjusting ventilation fan speed according to need and reducing the need for makeup air.

Server room heat
Server rooms always require cooling, but summer temperatures can really increase the load. In addition, overheated servers may shut down, leading to costly downtime or repairs. There are a number of actions you can take to save energy and money:

- Retire idle equipment. Eliminate or consolidate unnecessary devices; this will reduce excess heat and lower temperatures.
- Manage airflow. Position servers in rows facing each other in a hot aisle/cold aisle arrangement. This improves airflow and cuts down on the need for cooling.
- Distribute servers. If you have extra room, distribute servers evenly throughout the space. This will reduce the potential for overheating.

Leaky ducts
Ductwork typically remains hidden behind walls and ceilings, but leaky ducts can show up on your summer energy bills through higher cooling costs. Inspect accessible ductwork for leaks and seal with mastic tape. Use aerosol-based technology to seal your entire duct system and avoid time-consuming manual sealing. Increase system efficiency by insulating accessible ductwork to prevent conditioned air from escaping.

The steam system trap
Failed steam traps and system leaks get more attention during winter, but for facilities that use steam for laundry, processing and other applications, a leaky system may be costing you all summer long. Establish a program for regular systematic inspection, testing and repair of steam traps, pipes and other system components.

Hoping to find more ways to cut your energy costs this summer and all year long? Consider an energy audit. A qualified professional auditor will examine your facility and recommend energy-saving opportunities.

Content provided for Questline customers. Powered by Questline RelationshipBuilder © Questline Inc.